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STABILITY OF REGULAR SHOCK WAVE REFLECTION 

V. M. Teshukov UDC 533.6.011 

As is known, the problem of steady supersonic inviscid gas flow around an infinite wedge 
has a nonunique solution [I]. One of the solutions determines the flow with a weak attached 
compression shock, and the other with a strong shock. An analogous nonuniqueness occurs in 
the problem of regular reflection of an oblique compression shock from a rigid wall (strong 
and weak reflected shocks). Stability of the flow with weak and strong reflected shocks rela ' 
tive to small nonstationary perturbations is investigated in this paper. Correctness of the 
problem of the perturbations of the flow with a weak reflected shock and incorrectness of 
the problem of perturbations of the flow with the strong shock are established. This result 
determines the stability boundary of regular shock reflection. Questions of the stability 
of flows with strong and weak shocks have long attracted the attention of researchers [2]. 
Analytic results were obtained earlier just for model simplified formulations of the gas dy- 
namic perturbation problem [3-5]. Assertions about the stability of flows with weak shocks 
and the instability of flows with strong shocks were expressed in [5, 6] in connection with 
an analysis of the results of calculation experiments. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 26-33, March-April, 1989. Original article submitted August i, 1988. 
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I. FORMULATION OF THE PROBLEM 

Let us consider the steady flow of an inviscid nonheat-conducting gas that occurs during 
reflection of an oblique compression shock from a rigid wall. Let P 0 be the incident com- 
pression shock (Fig. i), P l the reflected compression shock, and y = 0 correspond to the 
rigid wall. The densities Pi, pressures Pi, velocity vectors ul = (u i, v i) (i = 0, i, 2; 
v 0 = v 2 = 0) in the domains 0, i, 2 are constant, P2 > Pl > P0. These quantities are con- 
nected by the Hugoniot relations on the fronts F0, P1. 

According to the given incident shock parameters (quantities with subscripts 0, I) the 
main quantities in the domain 2 can be found by the shock polar method. Let q, ~ be polar 
coordinated in the hodograph plane u = qcos~, v = qsin~. The shock polar equation 

~, ~ = +aPcsin[(P--Pi)("c~--T--~/i-"(P--Pi))] 1/2 

follows from the Hugoniot relationships on the shock. Let �9 = p-l; T = ~(p, Ti, Pi) by vir- 
tue of the Hugoniot adiabat equation; the quantities without subscript correspond to the flow 
behind the shock and those with the subscript ahead of the shock. Conditions assuring unique- 
ness of the transition point through the speed of sound on the shock polar [points where the 
equality q2 = qi 2 _ (p _ pi)(~i + T) = c 2 is achieved, and c is the speed of sound] and the 
presence of just two points of intersection of the shock polar with the lines ~ = const (19 - 
~il < ~m, 9m is the limit angle of rotation of the velocity vector in the oblique shock) are 
obtained in [7] for the equations of state of a normal gas. We consider these conditions 
satisfied. The shock polar configuration corresponding to regular oblique shock reflection 
from a wall is displayed in Fig. 2. The flow in domain 2 is determined nonuniquely: the 
point 2 corresponds to flow behind a weak reflected shock, and 2 r to a point behind a strong 

shock (p2 {r > P2). 

It is also shown in [7] that in gases with the equations of state c = e(~, p), p = 
g(z, S) (S is the entropy and ~ the internal energy) satisfying the condition 

(p + ~g~)~;. -t- PT <~ O, (1 .2 )  

behind a strong reflected shock, the flow is always subsonic [a polytropic gas satisfies 
(1.2)]. If condition (1.2) is not satisfied, then the flow behind the strong shock can be 
both sub- and supersonic. Nonstationary perturbations of subsonic flows behind both weak 
and strong reflected compression shocks are examined in this paper. 

The stability of stationary shocks relative to nonstationary perturbations is studied in 
[8, 9]. Initial perturbations whose support lies in a band of finite width adjoining the 
shock front are examined in [9]. It is established that if the main flow parameters satisfy 
the inequalities 

M~- ~i~  H :: T,  
(1.3) 

A - - -  h t n  : I 1 " n  

'~ i - - 1 7  O p  ' - -  c / 

then the perturbations damp out on the shock front as time passes. If 

< A <  1 + 2M~, (1 .4 )  
M~+ M~ 

then the perturbations oscillate and do not damp out with the lapse of time. For ~ > i + 
2M n or ~ < -i an instability in a linear approximation holds. 

We shall consider that conditions (1.3) or (1.4) are satisfied on the incident and re- 
flected compression shocks. A description of the classes of equations of state is obtained 
in [I0] for which either the inequalities (1.3) or (1.4) are always satisfied on the shocks. 
In particular, (1.3) are satisfied on any shock front if and only if the equations of state 
satisfy condition (1.2); Later the domain of the parameters (1.3) will be called the strong 
stability domain while the domain of the parameters (1.4) is the neutral stability domain. 
It should be noted that the stability conditions (1.3) and (1,4) still do not guarantee cor- 
rectness of the formulation of the perturbation problem in domains 0, i, 2. Examples of 
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formulations of problems in angular domains are known for hyperbolic systems of equations 
when the boundary conditions determine the correct problem locally in the neighborhood of 
each face, but the problem in an angular domain as a whole is incorrect. 

Let nonstationary main flow changes occur because of the introduction of perturbations 
at the time t = 0 in the domain 0. By virtue of the supersonic nature of the flow the influ- 
ence of these perturbations are propagated into domains 1 and 2 for t > 0. Construction of 
the perturbed solution in domain 0 reduces to solving the correct mixed problem with Cauchy 
data at t = 0 and linearized Hugoniot conditions on F0 (this problem was considered in [9, 
ll]). After the perturbations have been constructed in domains 0 and i, there remains to 
find the perturbations in domain 2. 

We represent the flow parameters u, v, p, S in domain 2 in the form 

= p ~ + 9 ~ c ~ p ,  ~=u~+c~u,  ~=c~v, ~ = S ~ ( t + s )  

(u, v, p, S are dimensionless small perturbations). These functions satisfy the linearized 
gas dynamics equations 

u t - }  M u ~ - ~ p ~  = O, vt + M v ~ - i - p ~  = O, 
( 1 . 5 )  

Pt + M p x  + u ~  + vu .= O, S t  + MS~ = 0 (M = u2c~  ~) 

(the Cartesian coordinates x, y, and t = tc 2, t is the time selected as independent vari- 
ables). We write the equation of the perturbed reflected shock front in the form 

x = ag + (1)(g, t) a = .2 - - - -  

1:2 (P2 - Pt) 

Here x = ay yields F~, while #(y, t) is the desired small perturbation. 
value conditions of the mixed problem governing the perturbations in domain 2 (x 
t e 0) have the form 

t ~ - - O :  u = v = p = S = O ;  g = O :  v = O ;  

x =  ag: av - -  u = (1 A- a ~ ) ( l - -  A)(2M)-IP  ~ / ~ ( g ,  t), 

au + v -- M(R -- 1)(l ~ a~)-~y +/~(g, t), 
p = 2M(R -~ - -  1)(1 }- a2)-~(t ~- A ) - ~ ( ~ t  i- a M ( l  + a~)-~Oy)-~-  

+/~(y, t), 

S := p,c~ 1 - g~ (-r~, s~) ~T(p2, ~1, p~) (S.~gs (-r~, s~)) -~p + L (y, t); 

x -- y =: O: q)(O, t) - -  x( t ) .  

The initial-boundary 
y, y e O, 

( 1 . 6 )  

The first group of conditions are Cauchy data, then the condition of nonpenetration at y = 
0 follows, then the linearized Hugoniot conditions on FI, and the last is the condition for 
reflected shock front passage through the point of perturbed incident front incidence. Here 
fi(x, t), x(t) are given functions expressed in terms of known perturbed flow parameters in 
domain i. 
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Let us determine the domain of main flow parameters corresponding to weak and strong 
reflected shocks. At the point 2 (see Fig. 2), d~/dp > 0, while d~/dp < 0 at point 2*. 
Evaluation of d~2/dp by using (i.i) results in the expression (d~/dp) 2 = (a2(l - A) - R(I + 
5))(2p2c2=aM=) -~. Consequently, the parameter domain described by the inequality a2(l - A) - 
R(I + A) > 0 corresponds to the weak reflected shock while the domain described by the re- 
verse inequality corresponds to the strong reflected shock. Since 

a 2 - -  R t - -  M~ - -  RM~n 2R (M "~ - -  t)  
= < 0  

~ + n  ~--M~+R~8 (d'+n)(~--M~+nMn ~) 
f o r  M < l ,  t h e n  t h e  s t r o n g  s t a b i l i t y  c o n d i t i o n s  ( 1 . 3 )  a r e  c e r t a i n l y  s a t i s f i e d  on t h e  weak  
s h o c k .  S t r o n g  s t a b i l i t y  c o n d i t i o n s  ( 1 . 3 )  a r e  s a t i s f i e d  on  t h e  s t r o n g '  s h o c k  f o r  .: 

a 2 - -  R t - -  M,~ - -  RMn ~ 
a2 +------~ < A <~ ] _.,M~ n + RM~ 

and neutral stability conditions in the remaining domain of parameters. Therefore, the in- 
vestigation of regular shock reflection stability reduces to the problem (1.5), (1.6). Let 
us note that study of nonstationary perturbations in the domain behind an attached compres- 
sion shock during flow around an infinite wedge reduces to solving exactly the same problem. 
Consequently, the results of investigating problem (1.5), (1.6) are completely applicable 
to an analysis of the stability of supersonic gas flow around a wedge. 

2. CONSTRUCTION OF THE SOLUTION 

It is convenient to introduce polar coordinates x = r cos %, (I - M2)I/2y = r sin 8 in 
domain 2. Domain 2 in the new variables corresponds to the half-strip 0 ~ r < ~, 0 ~ 8 
O 0 [sin00 = (i - M2)l/=(a a + 1 - M2) -I/2, cos00 = a(a ~ + i -- M2)-1/2]. 

Let us consider the Laplace transform of the vector-function U = (u, v, p) with respect: 
to time 

U~ (k, r,  O) = S e - ~ t U  (t,  r, O) dt. 
0 

Let us also introduce the Laplace transform of the vector U~ with respect:to s radius 

U2(E,z ,O)  = i e - z r U ~ ( E ' r ' O ) d r "  
0 

The requirement of quadratic su~ability of IUI(X, r, O) I in r assures analyticity of U~2(X, 
z, 8) for positive Re ~ in the domain Re z > 0. To construct the solution of the problem (1.5), 
(1.6), we introduce the new desired functions D(X, B, @), o(X, ~, 8), L(X, p, 8) [IB = z + 
kMcosS, k = X(M = - 1)-i]: 

2q = (IP - -  k2)l/2Pa -{-. U'aki s in 0 - -  Vai(k  cos 0 - -  Mg)( t  - -  M2)-1/2, 

2c; = (Ix 2 - -  k~)~/2Pa - -  Uaki  sin 0 + Vai(k  cos 0 - -  M9)( I  - -  M2) -1/'~, 

L ~ (kM cos 0 - -  I~)P3 + U3(k cos 0 - -  M~) + k si~ O0 --M~)I/~V~ 

(2.1) 

[U~(X, ~, O) = (U 3, V 3, Ps) = Uz(X, .p - kMcosS, 0)]. Let us note that the last equation of 
system (1.5) can be integrated independently of the rest. For known u, v, p, ~ the function 
S is defined uniquely by using the conditions (1.6). Consequently, we later study an inde- 
pendent subsystem of the first three equations in (1.5) by using the boundary conditions (1.6) 
that do not contain S. The transformed equations (1.5) have the form 

n0  + ~ ( ~  ~ k2)V~n .  = O, (~o - -  i (~  2 - -  k ~ ) v - ~  = O, 
( 2 . 2 )  

Lo + (M~ cos 0 - -  k)(M sin O)-1L~ ---- O. 

An auxiliary complex variable associated with B by the relationship B = 271k(~ + ~-i) is used 
below. The branch of the reverse mapping ~ = ~(B)is selected in such ;a way that the follow- 
ing domain D O belonging to the exterior of the unit circle U~(X, p, 8)Rep > kiMcos8 (k = 
k I + ik2) belonging to the exterior of the unit circle ~ = }~I 2 1 of the plane ~ = ~e i~: 

a) • ~ (~/2, u]: t5 ~ 1, ( 2 . 3 )  

2~ - -  qh(O, u, ~) - -  r x ,  ~) < cp < 2u + qh(O, u,  ~) + ~.,(0, ~, [~);, 
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corresponds to the analyticity domains of the functions 

i~i~ } .~r E [ n ,  3n/2):  f~ >~ l ,  

i - x ,  < ,p < + • 

H e r e  ',cp,(O, ~r [~) -~ arecost2M[~ cos 0 c o ~ 2 f  -Z  1) ~ ~ / ~ z  cos~ x)-x/2];  ; 
[ OS = 

~in u = k~ lk l - ~. ~ 

T h e  b r a n c h  (V2 _ k 2 ) 1 / 2  i s  s e l e c t e d  s o  t h a t  (V2 _ k 2 ) 1 / 2  = 2 - 1 k ( ~  _ ~ - ~ ) .  S y s t e m  ( 2 . 2 )  i s  
integrated, its general solution has the form 

= / ( ~ e - * ~  o = /(~e*~ L = W t ( g M  - -  k cos 0)/(M sin 0)] ,  ( 2 . 4 )  

where f, Z, and W are arbitrary analytic functions (the dependence on X is not indicated in 
the notation). These functions should be determined by using the transformed boundary con- 
ditions (1.6). The function Ca(X, V) associated with r t) = r ~ + i - M2) -I/~, t) by 
the same transformations that connectlUs(X , ~, O) with ~U(t, r, O) can be eliminated from the 
transformed relationships (1.6). The following conditions remain: 

0 = 0 :  ~ 1 - - o = 0 ;  

0 = 0o: ~1 = h a + H ,  L = N~I + Q a +  K, 
( 2 . 5 )  

The coefficients h, H, N, Q, and K are given by the expressions 

M2B (l + A) X~--(a2+ l - -  M2)(1 - -  A) y2 _~ iM(t - -  M2)l/2(a~'+l--M~)r(~2--i) 
M2R (1 + A) X2--(a2+ l -7 M~)(i - -  A) Y~ --  iM(i "M2)l/2(a2+l--M2)Y(~2--i) ~: 

H ---- - -  kM (~ - -  ~--1) X 
M2R (t + A) X 2 -  (a 2 + I--M2) (t--A) Y2--gM (t - -  i 2 )  1/2 (a 2 --~ J--A{ 2) Y (~2 __ i)  

MX (l -~ A) R M X: ~ : .-2- " Faa + (a2 "q-t.+ a ~ l  ~ M 2 )  1 /2  XYF2 a + a 2 +iT "i l l  - -  M 2:YzFla + 

_1_ m 2(|-R)(M 21-_~a 2t)(a 2 - ~ t - M 2 )  1/2 X~Z(~L).I ]' 

(M ch (v - -  JOe) - -  l) (M el, (v + iOo) - -  t) ( 2 . 6  ) 
N ----- Mshv (eh v -- M cos 0o) X 

ia(t--Ma)l/2sh(v--iOo)--ch(v--iOo)+ M (l + a2) (t - -  A)] 
X Mch (v - -  i0o) - -  1 - -  + 2M ' 

Q (Mch (v - -  iOo) - -  t) (Mch (v + foe) - -  t) 
= Msh "r (ch v -- M cos 0o) X 

X [ - - ia ( l - -M' ) l /2sh(v+iOo)- -ch(v+iOo)+M ( t + a ~ ) ( l - - A ) l  
M c h ( v +  ~ - - - - t  + 2M ' 

co 

k (Meh (v + i0o)--t ) (Mch (v - -  iOo) - -  1) f 
K = M (oh v - -  M cos 0o) Fla , Z (s = ,J e--~tx (t) dr. 

o 

Here X = 2-i(a z + i - M2)I/2(~ 2 + i) -aM~; Y = 2-1aM(~ 2 + i) - ~(a = + i - M2) I/2, Fia are 
obtained from fi(Y, t) = fi(r(a 12 + i M2) -I12, t) by the same transformations as U s from 
U; the complex variable v is connected with P by the relationship ~ = kcoshv. The problem 
reduces to constructing the functions f, s and W satisfying conditions (2.5). Additional 
relationships and constraints on these functions, associated with the selection of the solu- 
tions of the original problem from a definite class, are formulated below. Methods for solv- 
ing boundary-value problems of complex variable function theory are used in the construction 
of the Laplace transforms of the solution of the perturbations problem. The Riemann problem 
[12] occurs here as an auxiliary problem and then the solution of the Riemann problem is con- 
tinued analytically into a broader domain. The question of the existence of a solution of 
the original problem is solved in calculating the index of the Riemann problem and in clari- 
fying the existence conditions for analytic continuation. 

After construction of the functions u, v, and p the functions r t) yielding the loca- 
tion of the perturbed reflected front is found uniquely by using conditions (1.6). 
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It follows from (2.5) that f(~) = s and 

I (~e -~~ = h (~) I (~e ~~ + H (~) (2 .7 )  

(l is omitted in the notation). By virtue of (2.5) the function W is expressed in terms of 
f. Therefore, it is sufficient to construct the function f. The analytic function P3 is 
restored in terms of f by means of the formula 

P~ = f (~e)  + f (~-~o) = 2 (f (~e ~~ + f (~-~o)) ( 2 . 8 )  
(~  _ k~)~/~ ~ (~ - ~-~) , 

while the functions Ua, V~ are restored by formulas following from (2.1). Let us note that 
for Re% > 0 the branch point p = -k of the mapping (p= " k2) I/2 is incident in the domain 
Rep > klMCOs8 ; consequently, it is necessary for the analyticity of P3(X, p, O) in the men- 
tioned domain that f(~) satisfy the relationship 

/(~) = --[(~-~), ]~I = i (2.9) 

on the section of the boundary ~ = 1 of the domain D o corresponding to the slit in the plane 
connecting the two branch points p = _+k. There also results from the representation (2.8) 

that for Ps to be analytic in D o the analyticity of f is necessary in the domain DO ~ = 
D o U DO + U DO-, where DO -+ {~: ~ = ~0 e-+io, ~0e DS}. We are interested in the solution p(t, 
r, 8) bounded for r = 0. According to known properties of the Laplace transform 

lira ([lP2) --- P It=o, 
Ix-->oo,larg ~l<nl'~ 

C o n s e q u e n t l y ,  t h e  s o l u t i o n  o f  ( 2 . 7 )  and ( 2 . 9 )  s h o u l d  be s o u g h t  in  t h e  c l a s s  o f  f u n c t i o n s  ana -  
l y t i c  in  D 0 ~ and bounded as  [~1 -~ ~. 

C o n s t r u c t i o n  o f  t h e  f u n c t i o n  f ( r  s a t i s f y i n g  r e l a t i o n s h i p s  ( 2 . 7 )  and ( 2 . 9 )  in  D00~ can 

reduce to the solution of a Riemann problem. It is sufficient to note that if f is known 
= - c D 8 ~), then outside the limits in the sector S80 {~: ~ O 0 ~ ~o ~ ~ + O0, ~ ~ i} (So0 0 

of the sector this function is continued analytically by using (2.7). Indeed, for ~ - 300 
~a ~ ~ - 80 the continuation is realized by means of the formula 

/(~) = h (~ei~176 i2~176 - t -  H (~ei~176 : ( 2 . 1 0 )  

and by the formula 

= ~e- iOo )-~ /(~) (i (~-~Oo) - H (~-~~ (h (~ ) . .  (2.1~) 
for H + 300 < ~ < ~ + 00. 

Successive continuation by using (2.10) and (2.11) permits predetermination of f(~) 
everywhere in D001 if the values of f are known i~ S00. To construct f in the sector we map 
~ conformally on the plane with a slit along the positive real half-axis. The mapping has 

form 

(~/Oo = p~/Oo ~JOo fo~ ~ = p~,~, ~ - Co < ~ < ~ + %). 

The Riemann problem occurs in the ~ plane: Find the function f analytic in a plane with the 
slit Im~ = 0, 0 < Re ~ = ~i < ~ bounded at infinity and satisfying the conjugate condition 
for Im ~ = O: 

~G ~ r 

0, / 
(;1) m 

/H ( - -  (;I/~ + (;~ - -  1)1/~)'%/~), 

(0 < ~I < oo), 

0<~i<i, 

I<~I<oo, 

0<~i< i, 

I<~I<oo 
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(f• are limit values of f from the upper and lower half-planes). According to (2.6), for 
1 < ~i <~'~G(~I) = (A - iB)(A + iB) -I, where A(1) = 0, B(!) = (R(I + A)( a2 + I - M2} -~ - 
(i - A)M-=)(aM + (a = + i - M2)II=) =, A(~) = 2-Ia(i - Me) -I/=, B(~) = 4-I(R(I + A) - a2(l - 
A)). If the main flow with a weak reflected shock is considered, then B(~) < 0, B(1) < 0. 
For a flow with a strong reflected shock B(~) > 0; hence if conditions (1.3) are satisfied 
on the shock, then B(1) < 0 while if the main flow parameters satisfy the neutral stability 
conditions, B(1) > 0. The contour on which the conjugate condition is given is conveniently 
appended to the real axis ! by setting G = 1 and m = 0 for -~ < ~ir < 0. 

The question of solvability of the Riemann problem obtained with discontinuous coeffi- 
cients is solved after evaluation of its index. The index of the problem in the class of 
functions bounded at points of discontinuity of the coefficients can be calculated from the 

formula [12] 

• = (2n)-lA argG (~l)t~, 0 < ( 2 n )  -1 arg (G(c; - -  O ) / G ( c i 4 : - O ) ) < I  

[c i are points of discontinuity of G(~I)]. The computation using this formula is realized 
sufficiently simply since changes in A and B along the contour as a function of the parameters 
of the problem are known. We consequently have: a) x = -i for the main flow with a weak 
reflected shock; b) • = -2 for the main flow with a strong reflected shock on which the 
strong stability conditions are satisfied; c) • = -i for the main flow with a strong reflec- 
ted compression shock on which the neutral stability conditions are satisfied. According 
to the general theory, the Riemann problem is solvable uniquely in cases a and c. The solu- 
tion exists in case b only when the right side m(~) satisfies a solvability condition of 

the form 

~m(~l) N(~t)d[~ = 0  
l 

(N(~ l) is a function that is evaluated by means of the coefficients of the problem [12]). 
Therefore, in case b the perturbation problem is not solvable for general data. Explicit 
formulas by which f can be calculated in terms of G and m in cases a and c are presented in 
[tZ]. 

In the last two cases f must be continued from the sector in the domain De01. The con- 

tinuation will be analytic if the function h(&) has no poles for Im~ > 0, while for the func- 
tion (h(~)) -l has no poles for Img < 0. According to (2.6), h(g) is a rational function, 
the ratio of two fourth-degree polynomials. Moreover, it follows from (2.6) that h(g) = 
(h(~-1)) -l. Consequently, if ~ = a is a root of the polynomial in the denominator, then 

= a -i is a root of the polynomial in the numerator. Poles of the function h(~) are deter- 
mined as roots of the equation 

M : R ( i  + ~ ) X  ~ - -  (a ~ + 1 - -  M ~ )r ~ ( l  - -  5 )  - -  ( Z . ! 2 )  

--  iM(I -- M2) '/e (a 2 + t -- M2)Y(~: --  t) = O. 

LEMMA. If the main flow parameters satisfy strong stability conditions (1.3), then the 
polynomial (2.12) has no roots in the domain Im~ > 0. If the neutral stability conditions 
(1.4) are satisfied on the reflected shock for the main flow, then the polynomial (2.12) has 
the root a = eiy1, 01 < Yl < ~ (cos01 = McosO 0, sin8 z = (a 2 + I) I/2sino 0) on the boundary 
of the domain De0. 

Proof. By using the rational fraction substitution 

T = (~ - -  ~ )  ( u 1  - -  t ) - ~ ,  ~ = e - ~ %  

Eq. (2.12) is reduced to the biquadratic 

( 2 . ! 3 )  

( ( 2M~'B I ~ A ) T 2  I + ~ - - A  = 0 ,  (2.14) ~ - - A ~ T  ~ i - A  I - - - , - -  -- 

analogous to (3.5) in [9]. It follows from the results in [9] that the roots T i (2.14) satis- 
fy the inequalities ITil < 1 for satisfaction of conditions (1.3). By virtue of (2.13) the 
appropriate roots as (2.12) satisfy the inequalities Ima i < 0. 
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If the inequalities (1.4) are satisfied for the main flow, then, as shown in [9], Eq. 
(2.14) has two roots within the unit circle (Ima i < 0 for appropriate a i) and two real roots 
differing in sign outside the unit circle. By virtue of (2.13), the root of the polynomial 
(2.12) Q = eiXl, 81 < YI < ~, belonging to the section ~ = i of the boundary of the domain 
De0 corresponds to the real root T l > I. The lemma is proved. 

The results from the lemma, that f(~) can be predetermined everywhere in Ds01 for the 
main flow with a weak shock since no new singularities appear for analytic continuation by 
means of the relationships (2.10) and (2.11). It follows from the lemma that continuation 
of f(~) certainly has poles on the boundary of the domain D%01 for a main flow with a strong 
reflected compression shock on which the neutral stability conditions are satisfied: ~ = 
i, resulting in the appearance of poles of the function P3(%, V, 80) in the domain Re ~ > 
kiMcos 8 o . This means that, in this case, the problem of constructing Laplace transforms 
of the solution of the perturbation problems is not solvable in the class of functions analy- 
tic in the domain Re ~ > klMCOs e. In particular, this leads to the absence of integrable 
square solutions in the variable r. 

The fundamental functions describing the perturbed flow are restored by means of the 
Laplace transform found by application of an inverse transformation. Explicit expressions 
for the mentioned functions can be written by using representations of the Riemann problem 
solution. Estimates of the perturbations in terms of data of the problem are obtained by 
using estimates of the solution of the Riemann problem and the Parseval equality. 

Uniqueness of the solution in a sufficiently broad class of functions (functions for 
which the applied integral transformations have meaning) follows from the single-valuedness 
of the algorithm for construction of the Laplace transforms. 

In sum, correctness of the linear perturbation problem for stationary flow with a weak 
reflected compression shock and incorrectness of the corresponding problem for a main flow 
with a strong reflected shock have been established. By virtue of analogy of the formula- 
tions of perturbations problems, the same deductions are also obtained for problems of 
steady supersonic gas flow around an infinite wedge in the presence of attached compression 
shocks. 
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